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Abstract—The element efficiency of a phased array is the ratio
of the radiated-to-available power of a single element, when only
that element is excited. We relate this element efficiency to the
output noise power generated by a quasi-optical grid amplifier
array. Both electromagnetic and thermodynamic derivations will
be presented. These ideas will be used to predict the total noise
power and noise radiation pattern of grid arrays. The results are
also extended to show that the output noise temperature of the
entire array will be the same as the output noise temperature of
a single element.

Index Terms—Element efficiency, grid arrays, noise, quasi-
optics.

I. INTRODUCTION

QUASI-OPTICS has attracted increasing attention. By
combining the outputs of many solid-state devices in air,
high output powers are possible. Furthermore, the planar

nature of quasi-optical components makes them amenable to
conventional semiconductor fabrication and mass production.
Quasi-optical amplifiers have shown considerable promise.
Measurements of grid [1], [2] and array [3] amplifiers have
shown that the entire array noise does not increase with the
number of devices incorporated. The signal power, on the
other hand, does increase with the number of elements. This
important result implies that the dynamic range of quasi-
optical amplifier will increase with the number of devices.

In this paper, we present a theoretical study of the noise
properties of quasi-optical amplifier arrays. Our study will
concentrate on grid arrays—which tend to have small unit
cells—in particular. The approach, however, is general and
applies to larger cell amplifier arrays as well. We must
stress that our analysis is specific to amplifier arrays. Phase
noise in oscillator arrays has been measured [4], [5]. A
complete analysis (like Chang and York’s [5]) must include
the oscillator’s complicated nonlinear dynamics. Moreover,
Hacker’s noise radiation pattern measurements in [4] suggest
that the individual phase noise sources are highly correlated.
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Fig. 1. Section of a large planar phased antenna array.

II. ELEMENT EFFICIENCY

Our approach is based on the radiation efficiency of a single
element in an array antenna. This element efficiency relates
the power radiated by a single element in an array to the
power available to that element, when only the one element
is excited. Element efficiency was first proposed by Hannan
[6] and later extended by Kahn and Wasylkiwskyj [7], [8]
in the study of conventional phased-array antennas. In this
section, we will reproduce some of their original derivations
for completeness. Further details can be found by referring
to the original literature. Pozar [9] has recently explored the
active element pattern as well.

Consider a planar rectangular phased antenna array (like
the one shown in Fig. 1). When the number of elements
in the array is large, the behavior of each element will be
nearly identical, except for the few peripheral elements. It
is convenient to deduce the properties of this large array by
considering an infinite array. The element spacing in both the

- and -directions is . In quasi-optical parlance, is the
size of the unit cell. Generators with an internal impedance
excite the elements. All generators have identical magnitudes,
but differing phases. The progressive phase delay between
adjacent generators is in the -direction and in the
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Fig. 2. Representation of a large planar phased antenna array as a lossless
scattering network. The output port represents plane-wave radiation.

-direction. The main beam of this phased array will have
a peak in the scan direction given by

(1a)

(1b)

where is the free-space wavelength. Phasesand exist
from to radians, but the main-beam scan angle will
only exist when the relation

(2)

is satisfied. For phase delays outside this range, the main beam
will not be visible.

Each generator in the array sees the same antenna
impedance. This impedance will be a function of the phase
delays and is often referred to as the active impedance of the
array . We also define an active reflection coefficient

(3)

based on the complex generator impedance. Note that for
phase delays outside the range specified in (2), no main beam
is visible and must be unity, implying is
purely imaginary.

The antenna array can also be thought of in terms of
a lossless scattering network, as shown in Fig. 2. For an
infinite array, the scattering parameters will depend only on
the relative distance between any two individual elements,
not on the absolute element location. We define the scattering
parameter as the ratio of the normalized power wave
emerging from an element in column , row to the
normalized power wave incident on an element in column 0,
row 0. All input ports should be terminated in the generator
impedance . When only one element is excited with unit

incident power, the radiated power will be given by

(4)

This normalized power is the ratio of the power radiated from
a single element to the power available to the same element
when only that element is excited. This ratio is the definition
of the element efficiency [6].

We are now in a position to relate the element efficiency to
the active reflection coefficient. Assume all elements are now
excited with proper phasing. Using superposition, we find

(5)

This Fourier-series relation can be inverted to obtain

(6)

exploiting the even parity of with respect to and
due to the array’s symmetry. Equations (5) and (6) must also
obey a Parseval relation

(7)

We are now able to express the element efficiency in terms
of the active reflection coefficient using (4) and (7)

(8)

The element efficiency can be interpreted as the radiated-power
transmission coefficient averaged over all possible row and
column phase delays.

III. T HE IDEAL ELEMENT

Hannan [6] and Kahn [7] define an ideal element as one that
is matched for all visible main-beam scan angles. For phase
delays inside the circular boundary given by (2), will
be zero. For phase delays outside this region, the main beam
is not visible and will be unity. When the element
spacing is less than , the ideal efficiency will be

(9)

where is the area of the unit cell. This is the most
important result for grid arrays, which tend to have rather
small unit-cell sizes. For element spacings between and

, (8) must be integrated directly to find. For element
spacings larger than , will be unity. When the
element spacing is greater than , one must also be careful
to avoid the excitation of grating lobes; usually the element
pattern is truncated to suppress their appearance. Fig. 3 shows
the ideal element efficiency for an infinite square array with
element spacing (unit cell size).
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Fig. 3. Ideal element efficiency�i for an infinite planar array. The unit cell
is square with dimensiona on a side.

Using an argument based on physical intuition, Hannan [6]
concludes that the realized antenna gain of a single excited
element must be

(10)

Equation (10) is a true antenna gain—it is based on the power
available to the element. We see that the element pattern of
an ideal element will be proportional to . However, if
grating lobes can exist, this ideal pattern must be truncated
to avoid their excitation. For nonideal elements,
will not necessarily be zero. If, however, the nonideal array
is matched for a normal beam, the element pattern will be
somewhat narrower than .

IV. A T HERMODYNAMIC APPROACH

The preceding results are based entirely on the arguments
presented in [6]–[8]. These results can be explained quite
naturally in thermodynamic terms as well. We first consider a
large array of closely spaced ideal elements.
We will consider nonideal elements later. The array is placed
on a ground plane such that it only radiates into a hemisphere.
Each element is excited by a noisy matched load with noise
temperature . The noise power in a unit bandwidth available
to any element is simply , where is Boltzman’s constant.
Each ideal element radiates a noise power spectral density
of , where is the ideal element efficiency defined in
Section III. Assuming all the noise sources are uncorrelated,
the total noise power spectral density radiated by the
elements in the array will be

(11)

Next, we note that this array of ideal elements is, by defini-
tion, matched for all possible angles of the main beam. The
reciprocal relation must also hold: the array must not reflect

plane waves incident from any angle. In this way, the entire
array resembles an ideal blackbody. The power spectral density
per unit solid angle radiated by this blackbody is defined as
the radiation intensity . The radiation intensity can
be obtained from the Rayleigh–Jeans brightness law, valid for
low frequencies where quantum effects can be neglected, as
follows:

(12)

where is the area of the entire array. Note that
is simply . Furthermore, (12) is derived assuming the
radiated power is in a single polarization. The total power
per unit bandwidth radiated by the blackbody is obtained by
integrating (12) over a hemisphere

(13)

which is the well-known result for a Lambertian source.
Equating (13) and (11) gives an expression foridentical to
(9). We also see immediately from (12) that the ideal element
radiation pattern must have a dependence.

For nonideal elements, the realized antenna gain of a single
excited element can be deduced from (12) and introduces an
emissivity factor

(14)

where is unity for an ideal blackbody. Like (10), this
antenna gain is based on the power available to the element

. Comparing (14) to (10) allows us to relate the active
reflection coefficient to the emissivity in the traditional manner

(15)

Equation (1) provides a mapping between the and
domains. Finally, we write an expression for the total-

noise power spectral density radiated by a nonideal array as
a solid-angle integral

(16)

The symmetry of the large planar array demands that the
element pattern display a fourfold symmetry dictated by the
four quadrants of the azimuth angle. Noting that the Jacobian

[10] of the mapping from the domain to the
domain is

(17)

we can recast (16) to read

(18)

Again, we note that the active reflection coefficient will
have unit magnitude for values of and corresponding to
invisible beam angles. Since is the power available to a
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single element, (18) predicts an element efficiencyidentical
to (8).

Of particular interest to the experimenter is the noise power
spectral density radiated normal to the array. For quasi-optical
grid arrays, it is reasonable to assume that the generator is
conjugate matched for normal beam angles. That is,

and . This assumption
has been confirmed experimentally by Kim using a lens-
focused network analyzer [1]. Under these conditions, the
noise intensity radiated normally from a grid ofuncorrelated
sources at temperature is given by (12) with the angle

set to zero. This confirms the assumptions made by Kim
[1] when first measuring the noise of grid amplifier arrays.
Note, (12) holds for both ideal as well as nonideal elements.
Nonideal elements radiate less total power than ideal ones,
but the normal intensity of the two will be identical due to the
narrower nonideal element pattern.

We have shown that the concepts of element efficiency
and its effect on element radiation patterns in phased arrays
apply quite naturally to noisy quasi-optical arrays. Further-
more, the relevant conclusions can be readily derived using
thermodynamic concepts.

V. CALCULATIONS FOR GRID ARRAYS

In this section, we present element efficiency calculations
for grid arrays based on the above derivations. Before pro-
ceeding, it is necessary to calculate the active impedance of
an infinite array . We use a modified version of the
induced electromotive force (EMF) technique used to analyze
grid oscillators [11], [12]. A sample unit cell is shown in
Fig. 4. A vertical strip of width is centered in a unit cell
with dimension . An assumed -directed surface current
distribution is also shown in Fig. 4. The surface
current is uniform across the strip widthand most of the strip
length . Within some small distancefrom the cell boundary,
the current falls linearly to zero. This current taper is necessary
to obtain convergent solutions for the active impedance. The
grid is fabricated on the front of a dielectric substrate with a
relative dielectric constant and a thickness. A perfectly
reflecting ground plane is on the rear of the substrate.

To compute the active impedance, we write our assumed
surface current as a series

(19)

where

(20a)

(20b)

Equations (20a) and (20b) are necessary to account for the
row and column progressive phase delays. Solving (19) for

gives

(21)

Fig. 4. Unit cell and assumed surface currentK(x; y).

We use the induced EMF technique [11], [12] to find the active
impedance

(22)

is the total current flowing in the strip. is an effec-
tive mode impedance related to the TE and TM-to-[13]
impedances seen by the grid in the - and -directions
as follows:

(23)

Since we have only estimated the current distribution, the EMF
technique will only approximate the active impedance. If more
accuracy is required, the current distribution could be refined
using the method of moments—an approach that has shown
success in analyzing grid arrays [14], [15].

Once the active impedance has been computed, the active
reflection coefficient can be determined from (3). We
also assume that the grid is conjugate matched at normal
incidence . Equation (8) can then
be numerically integrated. The normalized element efficiency

as a function of cell size is plotted in Fig. 5. For cell
sizes less than , the computed element efficiency is within
80% (1 dB) of its ideal value. The element patterns can also be
extracted from the active impedance using (10). Based on the
arguments presented in Section IV, the grid’s noise will follow
the element radiation pattern. Element patterns are shown in
Fig. 6 for a cell size of . Both E- and H-plane patterns
are somewhat narrower that the pattern, which accounts
for the actual element efficiency only being 83% of the ideal.
The E-plane pattern is quite a bit narrower than the H-plane,
as expected from the assumed current distribution.
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Fig. 5. Normalized element efficiency�=�i versus cell sizea for a grid
array. The strip widthw is a=10 and the substrate is air with a ground plane
�0=4 away.

Fig. 6. Relative element patterns for an array witha = �0=4, w = a=10,
and an air substrate with a ground plane�0=4 away.

One reason for the departure from the ideal element effi-
ciency is the active impedance variation with phase angle. Part
of this is caused by the mirror behind the array: at nonnormal
scan angles, the effective mirror location is closer by a factor
of . This problem can be alleviated somewhat by placing
the grid on a high-dielectric substrate. Even if the scan angle
varies considerably, the angle of incidence in the dielectric will
not, due to Snell’s law. This is verified in Fig. 7. The element
efficiency grows with the substrate dielectric constant, with the
most rapid growth occurring within . Fig. 8 plots the
element pattern for an array constructed on a substrate with

of 15 and a thickness of a dielectric quarter-wavelength.

Fig. 7. Normalized element efficiency�=�i versus substrate dielectric con-
stant"r for a grid array. The cell sizea is �0=4, strip widthw is a=10, and
the substrate thicknesst is �0=(

p
"r4).

Fig. 8. Relative element patterns for an array witha = �0=4, w = a=10,
and substrate with"r = 15 and thicknesst = �0=(4

p
15).

Both E- and H-plane patterns are very close to , which
accounts for the high element efficiency of 95%.

As a final comment, we note that it is possible to compute
the element efficiency from an assumed element pattern using
(16). For a grid array, it is quite natural to assume the element
pattern will be that of a uniform -directed line current of
length in front of a mirror. We suspect that this approach will
not be particularly accurate, however, because it neglects any
interaction between elements. Fig. 9 shows a typical element
pattern. Since this element pattern is quite different from ,
one would expect a rather low element efficiency. Fig. 10
confirms this suspicion—the element efficiency is only 74%
for .
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Fig. 9. Assumed element patterns for a line current with lengtha = �0=4
and an air substrate with a ground plane�0=4 away.

Fig. 10. Normalized element efficiency�=�i versus cell sizea for an
element with an assumed line–current pattern. The substrate is air with a
ground plane�0=4 away.

VI. SIGNAL-TO-NOISE RATIO

In this section, we investigate the effect of element ef-
ficiency on the quasi-optical system’s signal-to-noise ratio.
We first consider total signal and noise radiated power. In
a properly matched grid, the total radiated signal power must
be times the power available from a single element. The
total noise power radiated will be given by (13). This gives
a signal-to-noise ratio of

(24)

The results of Section V show that will be slightly larger
than unity for grid arrays. Equation (24) implies that the total

signal-to-noise ratio will not depend on the number of elements
in the array. This conclusion, however, is slightly misleading.
The radiated noise power will follow the element pattern, but
the signal power pattern will be considerably sharper due to
the array factor. The ratio of signal-to-noise intensity radiated
normal to the array surface may be a more useful measure.
The noise intensity is given by (12) and the signal
radiated intensity will be

(25)

This leads to a signal-to-noise normal intensity ratio of

(26)

This result can be interpreted in two ways. For a given output
power per device, the output signal-to-noise ratio measured by
an antenna along the optical axis of a grid array will, in fact,
grow with the total number of devices incorporated. Another
interpretation is for a given total output power, the output
noise power will be that of a matched amplifier with output
noise temperature .

VII. CONCLUSION

We have presented an analysis of the noise behavior of
quasi-optical grid arrays. This analysis should be useful for
predicting the noise power and patterns for quasi-optical grids.
The approach and many of the derivations are general—they
should also be applicable to other types of quasi-optical
amplifiers. Although the approach assumes an infinite planar
array, similar results could be obtained by considering finite
arrays. A more generalized method for calculating the active
impedance of each element would be necessary. Nutesonet
al. [16], [17] have successfully developed such an approach
for the analysis of quasi-optical systems.
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[11] Z. B. Popović, R. M. Weikle, M. Kim, and D. B. Rutledge, “A 100-
MESFET planar grid oscillator,”IEEE Trans. Microwave Theory Tech.,
vol. 39, pp. 193–200, Mar. 1990.

[12] R. M. Weikle II, “Quasioptical planar grids for microwave and
millimeter-wave power combining,” Ph.D. dissertation, California Inst.
Technol., Pasadena, CA, 1992.

[13] R. F. Harrington,Time-Harmonic Electromagnetic Fields.New York:
McGraw-Hill, 1961, pp. 152–155.

[14] S. C. Bundy and Z. B. Popović, “A generalized analysis for grid
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